First Year Of Terra Global Fluxes

Takmeng Wong, Bruce Wielicki, and Dave Young NASA Langley Research Center, Hampton, VA

24th CERES Science Team Meeting Newport News, VA May 1 - 3, 2001

OBJECTVIES

- Illustrate The First Full Year* Of Daily Mean and Monthly Mean Terra Global Fluxes From The Archival CERES ERBE-like Edition1 Dataset.
- Compute Annual Mean CERES/Terra Global Fluxes From Monthly Mean Data.
- Contrast These CERES/Terra Results With The First Full Year** Of ERBE/(NOAA9+ERBS) Global Fluxes.
- * First Full Year Of CERES/Terra Data: 03/01/2000 To 02/28/2001
- ** First Full Year Of ERBE/(NOAA9+ERBS) Data: 03/01/1985 To 02/28/1986

FIRST YEAR TERRA DAILY GLOBAL OLR

- Produce Terra Daily Mean Regional OLR Animation Using 365 Daily Mean Terra OLR Maps.
- Captured Numbers Of Weather And Climate Features:
 - Tropical Convections
 - Mid-latitude Fronts
 - Hurricanes
 - Cyclones
 - Intertropical Convergence Zone (ITCZ)
 - South Pacific Convergence Zone (SPCZ)
 - Dry/Hot Desert Regions Of Subtropics (Oceans And Lands)
 - Extreme Cold Regions Of The Poles

Earth Outgoing Longwave Radiation CERES Instrument on NASA EOS Terra Satellite

Date: 03/01/2000

FIRST YEAR TERRA MONTHLY GLOBAL FLUXES

- Produce Terra Monthly Mean Regional Animations Using 12 Monthly Mean Maps Of Longwave, Shortwave, And Net Radiation.
- Captured Numbers Of Climate Features:
 - Annual Migration Of ITCZ, Subtropical Deserts, And Mid-Latitude Zones.
 - Tropical Hot Spots Over Lands And Pacific Warm Pool.
 - Stratiform Clouds Off the West Cost Of Major Continents.
 - Cooling Effects OF The Major Deserts And The Poles.
- Computed Monthly Zonal And Monthly Global Mean Values.

Earth Outgoing Longwave Radiation CERES Instrument on NASA EOS Terra Satellite Month: 03/2000

Earth Reflected Shortwave Radiation CERES Instrument on NASA EOS Terra Satellite Month: 03/2000

Earth Net Radiation
CERES Instrument on NASA EOS Terra Satellite
Month: 03/2000

Zonal Mean Longwave Radiation CERES/Terra, 2.5-degree ERBE-Like, 1st Full Year

Zonal Mean Shortwave Radiation CERES/Terra, 2.5-degree ERBE-Like, 1st Full Year

Zonal Mean Net Radiation CERES/Terra, 2.5-degree ERBE-Like, 1st Full Year

Comparison of Global Mean Longwave Fluxes

Comparison of Global Mean Shortwave Fluxes

Comparison of Global Mean Net Fluxes

Time Series of Global Mean Flux Differences

(CERES/TERRA 1st Full Year Minus ERBE/(ERBS+NOAA9) 1st Full Year)

Decadal Variability in Tropical Mean (20S - 20N) Longwave Radiation from 7 Different Broadband Instruments for 1979 - 2001 Anomalies Referenced to 1985 through 1989 Baseline

FIRST YEAR TERRA ANNUAL GLOBAL FLUXES

• Computed Annual Regional, Annual Zonal, And Annual Global Mean Values Of Longwave, Shortwave, Net, And Albedo.

Annual Global Mean	CERES/TERRA (Wm ⁻²)	ERBE/ NOAA9+ERBS (Wm ⁻²)	CERES - ERBE (Wm ⁻²)
LW	240.1	234.1	6.0
SW	98.6	101.9	-3.3
NET	2.6	5.3	-2.7
ALB	28.90%	29.87%	-0.97%

Longwave Radiation

CERES/Terra, 2.5-degree ERBE-Like, 1st Full Year Mean Global Mean (90S-90N) = 240.1 Wm⁻²

Comparison of Zonal Mean Longwave Fluxes

Longwave Radiation Differences

CERES/Terra Minus ERBE/ERBS+NOAA9, 1st Full Year Mean

Global Mean (90S-90N) = 6.0 Wm⁻²

Shortwave Radiation

CERES/Terra, 2.5-degree ERBE-Like, 1st Full Year Mean Global Mean $(90S-90N) = 98.6 \text{ Wm}^{-2}$

Comparison of Zonal Mean Shortwave Fluxes

Shortwave Radiation Differences CERES/Terra Minus ERBE/ERBS+NOAA9, 1st Full Year Mean Global Mean $(90S-90N) = -3.3 \text{ Wm}^{-2}$

Net Radiation

CERES/Terra, 2.5-degree ERBE-Like, 1st Full Year Mean Global Mean $(90S-90N) = 2.6 \text{ Wm}^{-2}$

Comparison of Zonal Mean Net Fluxes

Net Radiation Differences

CERES/Terra Minus ERBE/ERBS+NOAA9, 1st Full Year Mean

Global Mean $(90S-90N) = -2.7 \text{ Wm}^{-2}$

Comparison of Annual Zonal Mean Fluxes Differences

SUMMARY

- The First Full Year of CERES/TERRA Global Fluxes Shows Many Interesting Features, Ranging From Daily To Monthly To Annual Time Scale.
- The CERES/Terra Annual Global Mean LW/SW Fluxes Are High/Lower Than Those From ERBE/NOAA9+ERBS, Respectively.
- The CERES/Terra Annual Global Mean Net Fluxes Are Closer To Radiative Equilibrium Than Those From ERBE/NOAA9+ERBS.
- While The CERES/Terra Annual Regional Mean LW Fluxes Are Higher Almost Everywhere Than ERBE Fluxes, The Annual Regional Mean SW And Net Fluxes Show Many Interesting Spatial Differences.